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The convective instability of a layer of fluid heated from below is studied on the 
assumption that the flux of heat through the boundaries is unaffected by the motion 
in the layer. It is shown that when the heat flux is above the critical value for the onset 
of convection, motion takes place on a horizontal scale much greater than the layer 
depth. Following Childress & Spiegel (1980) the disparity of scales is exploited in an 
expansion scheme that results in a nonlinear evolution equation for the leading-order 
temperature perturbation. This equation which does not depend on the vertical 
co-ordinate, is solved analytically where possible and numerically where necessary; 
most attention is concentrated on solutions representing two-dimensional rolls. It is 
found that for any given heat flux a continuum of steady solutions is possible for all 
wave numbers smaller than a given cut off. Stability analysis reveals, however, that 
each mode is unstable to one of longer wavelength than itself, so that any long box will 
eventually contain a single roll, even though the most rapidly growing mode on linear 
theory has much shorter wavelength. 

1. Introduction 
The convective instability ofa layer of Boussinesq fluid heated uniformly from below 

has long been recognized as a problem of crucial importance in many fields of fluid 
mechanics, and any discussion of energy transport in the earth’s atmosphere, its 
oceans, mantle and core, or the outer layers of the sun, must take account of this 
instability. I n  attempts to understand the phenomenon theoretically, the model 
usually adopted is that of a fluid layer of infinite horizontal extent, whose upper and 
lower boundaries are held a t  fixed temperatures. This problem was first addressed by 
Rayleigh (1916) and has been extensively studied since. (See Chandrasekhar 1961 for 
a full account of the linearized problem.) In  recent years many authors have tried to 
understand more about the nonlinear aspects of the instability as a prelude to an 
understanding of thermal turbulence. Malkus & Veronis (1958) have found the rela- 
tion between temperature difference and amplitude of the instability in the weakly 
nonlinear regime, and Schluter, Lortz & Busse (1965) have used these weakly non- 
linear solutions to determine which of the several planforms permitted by the linear 
problem is in fact realized. All analytic work on nonlinear effects has perforce to be 
accomplished by means of a perturbation expansion in the amplitude, since the fully 
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I Instability 1 

FIGURE 1. The boundary for the transition from stability to instability in a periodic box of 
length 2n/k a~ a function of k. For R = R,+e2(e2g  1) instability is possible only for k < k,  = 

O(4. 

nonlinear problem usually defies analytical solution. Other studies have investigated 
the stability of steady solutions at  all amplitudes using numerical techniques. (For 
a recent review, see Busse 1978.) 

It is clear, though, that the assumption of fixed boundary temperature is sometimes 
quite inappropriate - for example, when convection occurs in a relatively thin layer 
of highly conducting fluid embedded in a very poorly conducting region. Horizontal 
temperature variations in the Earth’s mantle due to deep-seated convection indicate 
that in this case also a fixed temperature boundary condition is inappropriate.? One 
might consider a sequence of conditions of the ‘Newton’s Law of Cooling’ type. As a 
first step in this path, bearing in mind that the fixed temperature problem is well 
understood, it seems natural to investigate the problem of convective instability 
when the boundaries of the layer are much poorer conductors of heat than the fluid 
itself. The linear stability problem was first investigated by Jeffreys (1926) in the limit 
for which the boundaries are almost perfect insulators. His analysis is incorrect, how- 
ever, owing to an error in the velocity boundary conditions. More recently Sparrow, 
Goldstein & Jonsson (1964) and Hurle, Jakeman & Pike (1967) made comprehensive 
studies, the former for temperature boundary conditions of a ‘Newton’s Law of Cool- 
ing’ type, and the latter for a layer enclosed between poorly conducting solid slabs. 
Related work by Nield (1967) and Jakeman (1968) should also be mentioned. These 
authors noted that as the ratio of conductivities of fluid to boundary becomes very 
large, the critical horizontal wavenumber for the onset of convection approaches zero, 
in sharp contrast to the fixed temperature case. In the so-called ‘perfect problem’ 
(both boundaries perfectly insulating so that the heat flux through the layer is 
unchanged by the motion), the critical wavenumber is zero. It is then clear that if the 

t The relevance of the present study to mantle convection is discussed by Chapman, Childresa 
& Proctor (1980) who also summarize the results presented here. 
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heat flux exceeds the critical value (for steady motion a t  zero horizontal wavenumber) 
only by a small amount, then motion can take place only on a large horizontal scale 
(figure 1). This was noted first for the related problem of convection due to swimming 
micro-organisms by Childress, Levandowsky & Spiegel ( 1975) : more recently Childress 
& Spiegel(l980) have exploited this disparity of scales to develop an expansion scheme 
for their equations in powers of the (small) horizontal wavenumber, and suggest the 
applicability of their method to other types of convection problem. (Such an expansion 
was foreshadowed by Nield (1975), who solved the linear problem in this way, but 
made no attempt to include the nonlinear terms). Although Childress & Spiegel’s 
method yields only subcritical (unstable) solutions for the problem they treat, in the 
present problem the technique can be used to obtain stable finite-amplitude 
solutions. t 

In this paper we carry out an expansion procedure of the type suggested by 
Childress & Spiegel for the ‘perfect problem’ (see above). The more involved ‘imperfect 
problem ’ has yet to be solved, although the first steps are given in Chapman (1980). 

We suppose that the layer has large horizontal extent and seek time-dependent 
solutions with a long horizontal length scale when the imposed heat flux through the 
layer is just larger than that needed for infinitesimal motion to occur. Most of the 
study is concerned with two-dimensional (roll) planforms, though we do indicate the 
procedure for hexagon-tyqe modes as well. The three-dimensional problem has been 
addressed in a different way by Busse & Riahi (1 980). They consider weakly nonlinear. 
solutions of the problem solved by Sparrow et al. when the boundaries are almost 
perfect insulators. By using analysis similar to that of Schluter et al. (1965) they show 
that the preferred horizontal planform takes the form of rectangular cells when the 
heat flux is very close to its critical value for the onset of convection. The methods of 
the present paper can be used to extend greatly the parameter range in which the pre- 
ferred planform can be found, but work on this is a t  an early stage. We must emphasize, 
in the light of many comments from those who have read a preliminary report of this 
work (Chapman 1978), that the expansion is not a ‘small amplitude’ expansion of the 
Malkus & Veronis (1958) type; for example, the first non-trivial differential equation 
to appear is in fact fully nonlinear. (Of course, for certain wavenumbers the amplitude 
of the motion is small and in this case the solution can also be found by an amplitude 
expansion.) Because of the approximation, it is easy to deal with any combination of 
boundary conditions on the velocity a t  the top and bottom of the layer of fluid. We 
treat the obvious cases of fixed-fixed, free-free and free (top)-fixed (bottom). There 
is no important difference between the first two, but the last problem, involving as it 
does an asymmetry between up and down motions (even though the fluid is taken to be 
Boussinesq), introduces some new effects. In  particular, the Prandtl number v = V / K  

where v is the kinematic viscosity and K the thermal diffusivity, enters the analysis 
only in this case. 

t The techniques employed resemble those of Newel1 & Whitehead (1969) who studied 
packets of closely related modes in the fixed temperature problem, and obtained envelope 
equations for slow modulation that are similar to ours; the details are different, however, as they 
are perturbing about a finite wavenumber, and we perturb about zero wavenumber. 
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az 

or U = 0;  z = 0,1, case B, two rigid boundaries 

a 
or U = 0, z = 0; U . 2  = - (U .  2) = 0, z = 1 caseC. 

2. The expansion scheme 
We consider a layer of Boussinesq fluid of depth 2d lying between the planes 

z = k d; (x, y, z )  are Cartesian co-ordinates. Gravity g = -9% is perpendicular to the 
boundaries. The fluid has velocity U, and pressure p .  Its kinematic viscosity is v and 
and thermal diffusivity K. The temperature gradient at  the top and bottom boundaries 
is /I, and is assumed to be unaffected by the motion (the top and bottom boundaries 
being poor conductors of heat). If the temperature of the fluid is T = T,-,!?z+B 
where To  is some reference temperature (at which the density of the fluid is po), and 
a is the coefficient of expansion, then the non-dimensional equations of motion and 
heat conduction are 

(T-’(g+u.vu) + v p  = RBk+VW, (2.1) 

ae -+u.ve = U.5+V28, ( 2 . 2 )  

v.u = 0) (2.3) 

at 

where I U I is scaled with K / d ,  p with povK/d2 time t with d2/K, lengths with d, and 8 
with Pd. The dimensionless parameters are the Prandtl number 

( 2 . 7 )  

(T = V/K, 

R = ga$d4/~v. 
and the Rayleigh number 

There is clearly a solution to these equations with U = 0 and horizontal isotherms 
(0 = 0). As with fixed temperature boundaries, this static state is unstable if R is 
sufficiently large. It can be shown that in the present case, the critical value of R for 
the onset of convection is a monotonically decreasing function of wavelength, so that 
the lowest critical value occurs for infinitely long horizontal scales. Figure I gives a 
sketch of the stability boundary as a function of k = 2n/L, where L is the wavelength 
of the disturbance. Above the curve shown, some disturbances can grow. Below the 
curve, all disturbances decay, even if they are finite amplitude, provided L is now 
defined as the dimension of a ‘periodic box’. This very powerful result, exactly 
analogous to one for BBnard convection between perfectly conducting boundaries, 
can be proved by ‘energy integral ’ methods of the type pioneered for fluid mechanical 
problems by Backus (1958) and Serrin (1959); a full description of modern applica- 
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Nonlinear convection between poorly conducting boundaries 763  

tions can be found in the monograph of Joseph (1976). The proof in the case a t  hand is 
given in appendix B. 

Inspection of figure 1 shows that the only disturbances that can grow have a hori- 
zontal wavelength that is long compared with the depth of the layer. Indeed since 
R N A , + A 2 / L 2  (where A,, A ,  are constants) for L + 00, if R = R,+0(e2)  where 
E Q 1 and Re is the critical value for infinite L, then L O(6-l) for growing solutions 
to be possible. This suggests that in order to investigate the latter we should set 

I R = R,+p2e2, p = 0(1), 

a/ax = &/ax, and similarly for a/ay. 

We also need to find appropriate scales for temperature perturbation, velocity and 
time. It will emerge from the analysis that the correct scaling is 

a 
- €4- 

a _ -  
at 87’ 

(2.9) 

the power of E that appears is plausible since (i) R is only just greater than Re so 
growth rates are slow (this gives a factor €2) and (ii) horizontal scales are long so 
information takes a time O(e-2) to diffuse across the system. One of the consequences 
of linearized theory is that 1 U I / \  8 I = Ole) (the rate of vorticity generation is small 
due to the long horizontal scales). However, we have no guide as to the correct ampli- 
tude to take for 0. In  what follows, we suppose that 0 = O( 1). The analysis then leads 
to a non-linear equation for 8 which has periodic solutions. If we had set 8 smaller, then 
nonlinear terms would not have appeared a t  leading order. Although the scaling 
actually adopted is hard to see from the equations in advance, it turns out to be the 
only appropriate one when ,u = O( 1). 

Since E is a small parameter, it  is natural to attempt a solution by expansion in 
powers of E .  Such an expansion is in general asymptotic and has no formal radius of 
convergence. In  this respect it differs from the analysis made by Malkus & Veronis 
(1958) for perfectly conducting boundaries, where a formal zone of convergence exists. 
It seems likely that, as with many asymptotic expansions, the first terms do in fact 
provide an accurate description if E is sufficiently small, but the proof of such a 
proposition seems impossible without detailed computation. 

The bulk of the analysis we undertake will be for two-dimensional rolls. Although 
Busse & Riahi ( 1  980) have shown that square cells may be the preferred planform in an 
infinite layer when the boundaries are slightly conducting, there are configurations 
for which only rolls are possible, although they are somewhat artificial. The main con- 
clusions of the theory presented here appear to apply to general three-dimensional 
planforms, as discussed in the next section. The investigation of Busse & Riahi, 
based as it is on an expansion about a single horizontal wavenumber, is valid in a 
parameter range that is much more restrictive than that studied here (in particular, 
,u Q 1 is necessary for their expansions to be valid), and there is no guarantee that their 
results remain valid for the full range of p.  Since the two-dimensional analysis is SO 

much simpler, it  seems natural to use it as a starting point for understanding the 
general behaviour. We therefore suppose that U ,  = 0 and that all variables are inde- 
pendent of y. Then U can be written in terms of a stream function $ ( X ,  2); 

u =  - , 0 , - 6 -  I (it ax ”I”) (2.10) 
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764 C .  J .  Chapman and M .  R. E .  Proctor 

If we now adopt the scaling of (2.8), (2.9) and in addition set @ = e$, then (2.2) and 
the curl of (2.1) may be written, without approximation, as 

ae a4$ a 2  

ax ax4 ax2 
= (R, +p2c2) - + € 4 -  + 2 ~ 2 -  (D2$) + D4$, (2.11) 

and 

(2.12) 

where DO = aB/az ,  etc. and a ( .  . . , . . . ) / a (X ,  z )  is the usual Jacobian. 

power series in €2; thus we write 
Since odd powers of E do not appear in the expansion, we may expand 8 and $ as 

(2.13) 

if we substitute these expressions into (2.11), (2.12) and equate powers of e2, the 
resulting sequence of problems can be solved successively. We undertake their solu- 
tion in the following section: the aim is to find the dependence of 19, and $o on X, z and 
7, and this will require discussion of the equations for 02, 8, and $2. 

3. Derivation of the governing equation 
We now seek solutions to (2.1 I ) ,  (2.12) in powers of e2. We shall give solutions valid 

for all three sets of velocity boundary conditions discussed above. The differences 
arise only in the details of certain polynomials that appear in the analysis, and these 
are relegated to appendix A. 

A t  O( 1) equation (2.12) yields 
D2e0 = 0 (3.1) 

60 = f ( X ,  7) (3.2) 
with DOo = 0,  z = &- 1.  Thus 

and the purpose of the subsequent analysis is to determine an equation for f. 
Equation (2.1 1 ) gives 

(3.3) 0 = R c Z  a00 + D4$,, 

which is solved by 
$0 = R,P(z ) f ' ,  (3.4) 

wheref' = a f / a X ,  D4P(z) = - 1 and P(z)  satisfies appropriate boundary conditions. 
At Ole21 we obtain 

or 
0 2 8 ,  = -RcDPf' ' - f ' ' (Rp+ 1) .  
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Nonlinear convection between poorly conducting boundaries 765  

This equation is an inhomogeneous boundary-value problem, and solutions only exist 
when the right-hand side satisfies a solvability condition. In  the case a t  hand, we have, 
from the boundary condition on O,, 

D202dz = [DO,]?, = 0 (3 .7 )  

andso,sinceP(l) = P( - 1) = 0, 

f S 1  (R,P(x)+ 1)dz = 0 .  
-1 

Equation ( 3 . 8 )  determines R,. As we shall see from appendix A, R, = 1512, 45 and 
20 in cases A,  B and C ,  respectively. With the appropriate value of R,, (3 .6 )  can be 
solved to give 

where 

and f, is unknown. Then a t  O(e2), (2 .11 )  yields 

0 2  = f 2  (X, 7) +y2 W ( z )  +f"Q(z) (3 .9 )  

D2Q = -(R,P+ l) ,  D2W = -R,DP,  (3 .10)  

If (3 .4 )  and ( 3 . 9 )  are used to substitute for q30, 19, we can solve (3 .11)  to obtain 

where 
4, = RCf2'P+fl' 'U +puzf'P+f'yf'S, 

I D4U = - R,Q - 2RcD2P,  

0 4 5  = - 2R, W + v-~RE (PD3P - DPD'P) . 
At O( €4) we have 

and the solvability condition for this equation yields 

af = - Ap2f' - Bf"" + C(f'3)' - D(f'f")' 
a7 

where 

(3 .12 )  

(3.13) 

(3 .14)  

(3.15) 

1 (3 .16)  

These non-negative constants depend on the boundary conditions. It is immediately 
clear from the equations that if both boundaries are fixed or both are free, then P and Q 
are even functions of z and S is odd. Thus D = 0 in both these cases. If we group these 
two problems as the 'symmetric case', then we see that in this case (3 .15 )  is independ- 
ent of (T, since the lat,ter enters only through S ( z ) .  The unknown function f2 ( X ,  7) does 
not appear in (3 .15 )  and is determined at  higher order in the expansion scheme. Table 1 
shows the values of A,  B, C, D in the different cases, and the method for determining 
them is shown in appendix A. 
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Case A B G 

Re 1512 45 20 
A 2/15 1/45 1/20 

D 0 0 a + 5/21a 
B 1091/1386 341231 2321693 
C 155/126 10/7 760/567 

TABLE 1 

4. Steady periodic solutions of equation (3.15) 
4.1. The symmetric case 

We shall now suppose that f ( X ,  T ) ,  the leading order temperature perturbation, is 
independent of time, and thus obtain the possible forms of steady finite-amplitude 
convection. Which of these forms is stable must be decided by consideration of the 
full time-dependent equations. 

First, we reduce (3.15) to canonical form by writing 

A A2 c = J B X ,  T = -I-, B F = Jij, 
whence (3.15) becomes 

FT = -P2F,.5 - Fgg.5 + (q, - a(F,F,,),, (4.2) 

where a = D/(BC)*. We now set FT = 0 and (for the moment) a = 0 also. One inte- 
gration with respect to 6 th.en yields 

0 = GEE+P~C-G‘+/~;  G ZE FS, (4.3) 

where ,B is a constant. Recall that G(c)  is proportional to the horizontal velocity a t  any 
value of z .  If we now seek solutions in a periodic box of length e-l ( B / A ) t  L,  where 
L = 27r/k, say is O( l),  then clearly not only must G be periodic, but it must have zero 
mean (otherwise F would not be periodic). If we multiply (4.3) by Gc end integrate we 
obtain 

0 = &G% + &2G2- &G4 +pa + y, (4.4) 

where y is another constant. This is the equation for the ‘position’ G of a ‘particle) 
in a potential well 

as a function of ‘time ’, 6. 
Figure 2 shows configurations of the well for /3 > 0, /3 = 0, /3 c 0. For a periodic 

solution the ‘particle’ must oscillate in the well. It is clear that if /3 $. 0 the ‘particle’ 
oscillates about a non-zero value of G and it clearly spends more ‘ time ’ on one side of 
the origin than on the other; G then has a non-zero mean, and F is not periodic. 
Therefore /3 = 0 for periodic solutions. 

The particle analogy shows that there are infinitely many periodic solutions of 
different periods corresponding to different total ‘energies’. For the ‘particle’ to stay 
in the well, we need I G 1 c p, and the solutions of very large period clearly have 
1 G I N ,u for arbitrarily long times. 

W ( G )  = *p2G2-aG4+pG (4.5) 
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(a ) ( b )  ( C )  

FIGURE 2. Sketches of the form of the potential (W(G) = +Gz-iG4+PG, for (a) P > 0, ( b )  
= 0, (c) /3 < 0. Only in the second case can B have zero mean. 

FIGURE 3. The temperature pertubation P ( X )  in the steady state for various widths of box 
(solutions are impossible for widths < n) and a = 0. 

The boundary conditions a t  the edges of the periodic box, corresponding to zero 
horizontal motion, heat flux and tangential stress, can be written 

FE = FscE = 0 a t  6 = 0, L (4.6) 

(the first of these conditions ensures satisfaction of both the first two constraints) and 
we adopt these henceforward. Now the region 0 5 6 5 L contains two cells, between 
which the velocity reverses sign. Since the average of G is zero, G must vanish in the 
interval, a t  6 = $L by symmetry, and since p = 0,  GsE = 0 there also. Thus (4.6) may 
be applied at f = 0,  +L, between which values there is just one cell. 
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FIGURE 4. The function G ,  proportional to the horizontal velocity at any given value of z,  in the 
same cases as for figure 3. 

Equation (4.3) can be solved in terms of elliptic functions. If the parameter 
m(0 < m < 1)isdefinedby 

where 
p L  = 4( 1 + m)* K(m) 

(4.7) 
K(m)  = 

is the complete elliptic integral of the first kind, then 

Thus we see that p L  2 277 for a solution to be possible. When p L  is close to 277, m is 
small and so G(6) is sinusoidal and of small amplitude. For largeph, on the other hand, 
m N_ 1 and G - ,u tanh (pc/,/2). It will be seen that, although G is formally O( 1) in the 
scaling we have adopted, G -+ 0 as p -+ O(R -+ R,) a t  fixed L. 

Furthermore, there is no qualitative change in the solutions for different values of 
p:  indeed, p can be eliminated from the solution by setting 5 = pt ,  8 = pG. Since in 
any case we are interested in an experimental situation in which R is fixed and the 
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FIGURE 5. The functions ( a )  F and ( b )  G for various box widths (cf. figures 3 and 4) and a = 4. 
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disturbance is left to find its own length scale ,we now and henceforth set p = 1, so 
that E is deJined as (R - RC)4. (We could, as an alternative, fix L and regardp as a para- 
meter. Then there is a bifurcation a t  p = 277/L, and the maximum amplitude of G 
increases monotonically with p .  ) 

For ,u = 1,  (4.8) can be integrated once to yield 

Figures 3 and 4 show F and G for different values of L. It should be emphasized again 
that these solutions are all possible in an infinite layer. If however, the convection is 
confined to a periodic ‘box’ of length Lo the number of solutions depends on Lo. For 
2n < Lo < 4n only one solution is possible, for 477 < Lo < 67r two solutions are possible, 
and so on. 

4.2. The asymmetric case ( D  + 0 )  

Again we can integrate (4.2) once to obtain (with p = 1) 

0 = Gtc+G-G3+aGG5+,8. (4.10) 

We may set /3 = 0 if we assume the same boundary conditions on G as in the sym- 
metric case. This choice gives G point symmetry about 5 = 4L, which makes physical 
sense since one would not expect a cell rotating anticlockwise to look essentially differ- 
ent from one rotating clockwise. Furthermore, construction of the phase diagram for 
(4.10) reveals that the mean of G is zero only if p = 0. The solution to (4.10) can be 
reduced to quadratures (we are indebted to a referee for pointing this out), but it 
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FIGURE 6. The functions ( a )  F and ( b )  G for a box of width 277 for a = 0 (2) 8. 

turns out that a numerical solution using a space discretization is the most efficient 
way of obtaining the form of G. If the region 0 < 6 ,< +L is divided into 40 mesh inter- 
vals, solutions can be obtained by an accelerated Newton-Raphson type procedure in 
less than 1s of CPU time on the Cambridge IBM370/165. Figures 5 and 6 show 
solutions for F and G with various values of a and box length. It will be seen that as a 
increases the maximum of G moves to the left when G > 0 and that the region with 
F 6 0 is narrower than that with F >, 0.  This is presumably because the slippery 
upper boundary allows the horizontal temperature gradients to drive more rapid 
motions, thus compressing the cooling fluid into a relatively narrow cold (descending) 
plume. 

It has been noted elsewhere (Chapman et al. 1980) that (4.10) also arises, with a > 0, 
when convection is due to any source of internal heating additional to or instead of 
heating from below. As pointed out in that paper, the internally heated case is relevant 
to the problem of convection in the earth’s upper mantle. It seems probable that the 
term in a in (4.10) will parametrize a wide range of effects involving asymmetry 
between the top and bottom of the layer. 

25-2 
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4.3. The Prandtl-number dependence 

We have shown that the solution (4.8) does not contain the Prandtl number, even 
when the latter is O( 1);  in the non-symmetric case, a = 0.4976 + 0.3554/u9 and thus a 
for water ([r = 6.8) differs significantly from that for mercury ([r = 0.025). We do not 
expect the theory to remain accurate for very small u, since if u = O ( E )  the Reynolds 
number of the evolved flow is O( 1) .  It is thus potentially subject to shear flow instab- 
ility, which will presumably destroy the assumption of long horizontal length scales. 
Thus [r & E seems to be a necessary condition for the analysis to be valid. It is also 
likely that the condition is sufficient, though this is hard to prove. 

4.4. Three-dimensional solutions at inJinite Prandtl number 

The analysis of this paper would not be complete without a brief discussion of solu- 
tions that depend on y as well as on x. Clearly the appropriate length scale in the 
y direction will be O(s-l)  times the layer depth. If we suppose that u + co (a circum- 
stance approximated closely in the Earth’s upper mantle), then the resulting velocity 
field has no vertical vorticity, so that it is purely poloidal. It may thus be represented 
in terms of a single scalar function p(x, y ,  z) ,  where 

u = VAVA (Pa). (4.11) 

(If aU/ay = U ,  = 0,  p is related to the q5 of the last section by q5 = -@/ax.) The 
analysis can then be carried out in terms of P and 0. In the symmetric case, this yields 
an equation for the dominant temperature perturbation F(C, r ] ,  T )  (where r] = 

(A/B)dey ,  etc.andA, B, etc.areallasin §3),inthecanonicalform 

FT = -V&F-V$F+VH.(VIjlP[VEP[2) (4.12) 

whereV, = (a/aE, a/ay). 
Equation (4.12) reduces to equation (4.2) if aF/ar] = 0,a  = 0 mdp = 1.  No simple 

first integral of the equations appears to be available even when FT = 0,  but it is clear 
that steady solutions are possible with hexagonal and rectangular planforms in 
addition to the roll solutions already found. Busse & Riahi (1980) show that in the 
case of imperfectly insulating boundaries square cells are preferred when the ampli- 
tude of the perturbation is very small. In  the present case it seems unlikely that roll 
solutions will be preferred in an infinite layer, since the system selects the longest 
horizontal scale available to it, as shown below. However, there are circumstances 
when only roll solutions are possible and a somewhat wider range in which rolls are 
stable. We amplify and justify these remarks in the next section. 

5. Time-dependent solutions and stability 
5.1. Linearized theory 

We have shown in the last section that two-dimensional disturbances can grow 
provided their period is sufficiently long. When these modes have small amplitude 
their growth rate can be obtained by linearizing equation (4.2) (for p = l), so that 
F satisfies 

FT = - F [ & g )  (5.1) 
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and solutions exist, in the form 

where 
F(5, T )  = eie+sT, 

s = k 2 - k 4 .  

Thus when the disturbance is weak, the most rapidly growing mode has k = 1/42. 
Linear theory then predicts that cells of width 5 = 7~ 4 2  will be present a t  large times. 
However the linear theory is misleading, as we shall see. Investigation of the nonlinear 
equation (4.2) reveals that all modes in a periodic box are unstable to ones of greater 
wavelength. Thus eventually there will be only one roll in the box. The time taken for 
this ‘ eating up ’ of smaller cells by larger oaes is in general larger than the time taken 
for the k = 1/42 solution to be established. If the top and bottom boundaries are not 
perfectly insulating, wavelengths cannot become arbitrarily long, as previously 
mentioned (see Hurle et al. 1967); however, in that case the most stable wavelength is 
in general much larger than that corresponding to maximum growth rate, so that the 
perfect problem represents an appropriate limit. 

We first of all derive an exact (if (4.2) is assumed) evolution equation in the case 
a = 0 which shows that a steady solution cannot lose stability to a mode with a 
shorter wavelength. This does not tell us whether a mode of any given wavelength is 
stable to small disturbances, even of longer wavelength, and a variational problem is 
then solved numerically to show that in fact all solutions are locally unstable to modes 
longer than themselves. As a final test, numerical solutions of (4.2) were found by 
marching forward in time from an arbitrary initial state. The use of the computer 
allowed the case a + 0 to be studied: in all runs the eventual steady state was one with 
as few nodes as possible. 

5.2. The evolution equation for a = 0 

We now consider (4.2) with a = 0 in a periodic box, a t  the boundaries of which 
Fs = Fttt = 0. Let angle brackets denote a space average over this box. Then, 
following a suggestion of S. Childress, consider the functional 

(Note that V is the mean ‘Lagrangian’ in the particle analogy.; 
From the equation for F ( [ , T )  we have 

after integrating by parts and using (4.2).  Thus V always decreases while the system 
evolves to a steady state. In such a state, d V / d T  = 0 and (from (4.2) again) 

0 = (FF - Fit - F:) 

V = -3(F4 6) = -f<G4).  
so that if d V / d T  = 0 then 
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From (4.8) it now follows that V in a steady state is a decreasing function of wave- 
length. We can also see that the Euler-Lagrange equation for a stationary value of V 
(at fixed T) subject to the boundary conditions on F is 

- (Pi)[ + F ,  + Fct = 0, (5.9) 

which is just the condition that P i s  a steady solution of (4.2). Thus for such a solution 
V is stationary with respect to small perturbations. If V is a local maximum, the 
solution is unstable, since V can never increase; if V is a (local) minimum the solution 
is (locally) stable. Thus if the box is sufficiently long to contain several different 
steady solutions of different periods, there is no possible perturbation to an initial 
periodic state of given wavelength that can result in a final steady state of shorter 
wavelength (if it  did, V would have to increase a t  some point). 

Thus the only possibilities left are (i) that all possible modes in the box are unstabIe 
to those of larger wavelength, if such exist, and (ii) that some modes are locally stable 
to all small disturbances. To find out more we must consider the second variation of V .  

5.3. The stability criterion 

Let F,(()  be a steady solution of (4.2) with a = 0 and let Go = F,. Then consider 
the value of V for F = Po + 6(<) a t  fixed T ,  where 1 61 is so small that all terms of 
O( I 6 1 3 )  or smaller may be ignored; we have 

vrp, + 61 = VT[F,I+ (66 (F$[ - Fogs - F X ) )  + ( V g 6 ;  + - 36;) + O(l Y13). (5.10) 

The second term on the right-hand side vanishes by virtue of (4.2) and so the second 
variation of V is 

(5.11) S2V = V [ F ,  + 61 - V[F,] 
= i((3C:- 1 ) c f + + c )  

and we are interested in whether P V  is positive for all 6 that satisfy the conditions on 
F a t  the ends of the box. 6, like F ,  is only determined up to a constant, so let us write 
x = & and make the problem homogeneous by seeking 

(5.12) 

subject to the conditions x = xst = 0 at the ends of the box. If M < 0 there is some 
disturbance x which will make 62V negative. Then the solution F,  is unstable since V 
cannot increase. If M > 0 then F ,  is locally stable. (In fact exactly the same varia- 
tional problem can be derived from direct consideration of the linear perturbation 
equations satisfied by 6.) 

The Euler-Lagrange equation for (5.12) is 

xg + ( 1  + Jf- 3Gi)x = 0, (5.13) 

and it can be seen that the four boundary conditions given after (5.12) can be satisfied 
provided only that x = 0 a t  the ends. 

We first note that if the box is just long enough (2n + 6 where 6 < 1) to contain 
either one cell or two cells, then M is certainly negative. For in this case 3G: < 1 for 
the two-cell mode [Go = (86/3)tsin < + O ( @ ) ]  and so there is a solution x 2r' sin 46 when 
M 2: - 0.75. We have not been able to solve (5.13) analytically when Go is finite, but 
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FIGURE 7 .  The stability parameter M plotted against the cell width of'the lower wavelength mode 
when the perturbation has (1) twice and ( 2 )  three times its wave length. It will be seen that 
M < 0, implying instability. The wavelengths for which the perturbation grows as fast as the 
basic solution on linear theory are &A J5 and +R J l O  respectively. 

M was found for various lengths of box by discretizing equation (5.13) using finite 
differences. If, for some integer n > 0 

A( = L/n, Ei = iA(,etc. (5.14) 

where L is the length of the box, then, correct to O(AC2), (5.13) becomes 

A ii x j +Mxi+Biixi = 0 
where 

(0 < i < n)  

(5.15) i Bii = 1 - 3G&, 

Aii = - 2/At2, 

Bij = 0, 

Ai+l,j = Ai-l,j = l/AE2, 

A;j = 0, 

i + j ,  

Ii-jI > 1. 

Thus the problem is reduced to that of finding the (algebraically) smallest eigenvalue 
of a tridiagonal matrix, which can be accomplished very rapidly (even for large n), 
for example by the method of bisections. Computations were carried out in boxes 
twice as long and three times as long as the cell under study, for various box lengths. 
The results are plotted in figure 7 .  It will be seen that M is always negative in both 
cases, though it quickly approaches zero as the period becomes larger. For very long 
periods I M I is so small that  the method is no longer accurate. It seems clear, however, 
tha t  M is a smooth function of the period in each case, and so the transition from 
stability to instability (if it occurs) should take place via a 'neutral' mode with M = 0.  

There is in fact never such a mode, for any box length: if M = 0, then the resulting 
equation 

x"+(f -3G:)X = 0 (5.16) 

has the solution G,. This is periodic with the correct period but does not satisfy the 
boundary conditions a t  6 = 0,  L.  It is then a consequence of Floquet's theorem that 
the other independent solution of (5.16) can not have period L (Minorsky 1974). 
Thus an M = 0 mode does not exist, and SO there seems no way in which M can 
pass through zero. 

Thus we have shown that all steady solutions are unstable to modes of longer wave- 
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4 f 

FIGURE 8. Time development of the function F(5,T) in a box of length 8, starting 
F = -cos(nf;/S), with a = 0; F is plotted a t  T = 0, 10, 20, 30 units. 

from 

FIGURE 9. As figure 8, but with a = 1. Convergence occurred after only 20 units in this case. 

length, if the box is sufficiently long. This would not be surprising if the linear growth 
rate of the longer mode was the greater, but the phenomenon persists well beyond 
box lengths greater than 7745, which is the point a t  which cells of width L have 
slower growth rates than those of period L/2. Thus the linear theory is misleading 
in this context. 
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- 1  

-2 

-3 

FIGURE 10. Showing the breakdown of a two-cell mode and its replacement by a one-cell mode 
in a box of length 8. The dotted line shows the original steady stat,e before perturbation. Graphs 
are shown on T = 0, 20, 40, 60, 80. 

5.4. Numerical solution 

We decided to test the predictions of the last section in an entirely independent way 
by solving (4 .2)  as an initial value problem. Such a scheme also allows consideration of 
the case a =+ 0, which defies analytical solution. An explicit leap-frog scheme was 
used for the time derivative, and the space derivatives were obtained using a scheme 
of DuFort-Frankel type (see, for example, Moore & Weiss 1973). Naive application 
of the method led to  a rapidly growing instability on the scale of the mesh interval, 
but this was removed with a slight adjustment to  the time derivative. The final steady 
states of F and C: obtained by the theory were in excellent agreement with the steady 
solutions found earlier by a different method, and the growth rates in the linear regime 
correspond well with (5 .3) .  Forty mesh points were used in most runs; this gave errors 
less than 1 oh (though double-precision arithmetic had to be used). 

We first investigated the approach to the steady state by starting from a small 
value of F and marching forwards in time. Figures 8 and 9 show a typical development 
for a = 0 and a + 0 respectively. No anomalous behaviour was found. The numerical 
scheme could be ‘fooled’, by appropriate symmetry in the initial conditions, into 
reaching a steady state with half the period of the usual steady solution. Having 
obtained this ‘fooled’ steady state we perturbed i t  slightly with a larger period mode 
and allowed the system to evolve in time. The box length chosen was 8; this is greater 
than 7745 so the two-cell mode has faster growth rate (see discussion in $ 5 . 3 ) .  None- 
theless for both a = 0 and a $. 0, the perturbation grew from a very small level and 
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FIGURE 11. As for figure 10, but with a = 1. 

the eventual outcome was a long wavelength mode filling the box. The time develop- 
ment in these two cases is shown in figures 10 and 11. Other runs were performed for 
a 9 0; in no case did we find that the long wavelength perturbations decayed. 

5.5. The three-dimensional problem with a = 0 and u + co 

The evolution equation approach can also be applied here. Consider 

where the angle brackets now denote an average over a periodic box in ( 5 , ~ )  space 
(or possibly the whole space if a hexagonal tesselation is being considered). Then, just 
as before 

(5.18) 

and in a steady state 
v 3 =  -&(/VHFl4)  (5.19) 

just as for the two-dimensional case. Thus the globally stable mode in any periodic 
box is the one with the smallest value of V3.  It is immediately obvious that for many 
boxes two-dimensional rolls are globally stable. Consider for example a box 0 < 5 < L, 
0 < 7 < L. Then we know that a two-dimensional roll solution can exist in the box if 
L 2 7r. However, the steady linear problem for square cells has the form 

0 = (0% +Vk)  F, (5.20) 

and this has a solution of the form F = c o s a ~ c o s b ~  if a2+ b2 = 1 .  Thus a square cell 
solution can exist only for a = b = 1/42 and so L 2 n42 for the cell to fit in the box. 
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So for 77 < L < 7742 a roll is the only solution: for a wide range of values of L < 7742 the 
roll solution will have much larger amplitude and thus a smaller value of V g .  This is 
the basis of the remark made in the last section that rolls may be stable in the case 
cc = 0, but a full proof will have to await the development of a suitable numerical 
scheme. 

6. Conclusion 
In previous sections we have shown that when the Rayleigh number is close to the 

critical value R, for the existence of stationary disturbances with very small wave- 
numbers, convection can take place only on long horizontal length scales. Using the 
expansion technique of Childress & Spiegel (1980), we have been able to exploit this 
fact to obtain a description of the convection that does not involve the vertical dis- 
placement except as a passive parameter. This simplification allows an analytic 
solution to be obtained in certain circumstances even when the disturbance is fully 
nonlinear. It should once again be emphasized that the expansion is not of the Landau 
or ‘ modified-perturbation ’ type based on a single wavenumber; the expansion para- 
meter is the horizontal wavenumber (related to the magnitude of R-R,) but fully 
nonlinear solutions are permitted a t  leading order. The nonlinear analysis, backed up 
by numerical computation, reveals that the solution will always eventually exhibit 
the largest wavelength available to it, in contradiction to the predictions of linear 
theory alone. 

When the boundaries are not perfect insulators, the wavelength cannot be arbi- 
trarily large. Preliminary work on the ‘imperfect problem ’ indicates, however, that in 
this case the most stable wavelength is much greater than that of the most rigidly 
growing linear mode. The question of three-dimensional perturbations has only been 
considered in passing: it is clearly desirable to have a numerical scheme that would 
treat the general three-dimensional geometry as an initial-value problem. The bound- 
ary conditions at  the edges of the box used in this work are somewhat abstract, 
and are really no more than periodicity conditions. More realistic boundary conditions 
would be Ft = Frc; = 0 corresponding to solid, perfectly insulating boundaries. There 
is a perfectly good steady solution of (4.2) with these conditions corresponding to a 
single cell in the box, but there are no non-trivial solutions corresponding to two or 
more cells. This is because a t  leading order the equation is of fourth rather than sixth 
order in space and so the full set of boundary conditions will in general overdetermine 
the problem. In a long box containing many cells there is presumably a relatively 
thin boundary region where horizontal length scales are O( 1) and the extra derivatives 
provide a means of matching the boundary conditions. In the interior the solutions 
will resemble closely those found already for the periodic conditions. It seems likely 
that for the viscous edge conditions the most stable mode will be one whose wave- 
length is of the order of the width of the box, though it may not be the largest one 
possible. This aspect certainly deserves further study. 

The analysis presented in this paper has shown the enormous influence of the 
thermal boundary condition on the form and aspect ratio of the developing and 
developed convection cells. The two-scale method, applied here for the first time to 
nonlinear thermal convection, can be used also in the cases where the boundaries are 
imperfectly insulating, and makes possible for the first time the detailed treatment of 

’ 
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fully nonlinear three-dimensional cellular convection with more general boundary 
conditions. The possibilities are manifold; the present paper represents only a first 
step. 
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Appendix A. Evaluations of polynomials and integrals occurring in $32 
and 3 

We first note that all the integrals in (3.16) (not just A and C) can be expressed in 
terms of the two polynomials P ( z )  and DQ(z) which eliminates the need to evaluate 

U ( z ) ,  W ( z ) ,  S(z) .  If we write Udz  = U ,  etc. then the equation D4P = - 1, 

together with the boundary conditions on P and U ,  give 
s11 s 

/ U  = - I D  4P.U = -/PD4U 

= /P(R,Q+2R,DZP) (from(3.13)) 

= - / (1 + D2Q) Q - 2Rc/(DP)2 (from (3.10)) 
so 

B = -is( U + Q )  = R,/(Dp)'- i/(oQ)2. 
Similarly 

IS = -/PD4S 

= 2R,~WP-~- lR~ / (P2D3P-PDPDzP)  (from (3.13)) 

= - 2/ (  1 + D2Q) W - &T--~R;/(DP)~ 

= - ~ ~ W - ~ / R , P D Q - & T - ~ R ~ / ( D P ) ~  (from(3.10)) 

(from (3.10)) 

so 

D = ~ R , / P D Q - ~ ~ ( S + 2 W )  = ~R,/PDQ+$CT-~R,/(DP)~.  

All that remains is to give P and DQ in the three different cases, using D4P = 
equation (3.10): 

(i) Free-free: P = D2P = DQ = 0, = +_ 1, 
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(ii) Solid-solid: P = D P  = DQ = 0, z = & 1, 

P(z )  = -&(z4- 222+ l),  (A 10) 

R, = 45, (A 11) 

DQ = i ( 7 2 -  1Oz3+3z5). (A 12) 

(iii)Solid-free:P=DQ=O, z =  + 1 ;  D P = O ,  z =  -1; D 2 P = 0 ,  z =  +1, 

P ( z )  = -&(Z4-z3-3Z2+Z+2), (A 13) 

R, = 20, (A 14) 

DQ = & ( - 5 +  1 6 ~ + 1 0 ~ ~ - 2 0 2 ~ - 5 ~ ~ + 4 ~ ~ ) .  (A 15) 

A ,  B, C ,  D, are now obtainable by elementary integration. 

Appendix B. Energy-stability theory for an arbitrary disturbance 
We take the scalar product of (2.1) with U, the product of (2.2) with 8, use (2.3) and 

take an average over the whole layer, assuming the disturbance is bounded so the 
averages exist. This leads to the int,egral relations 

and 

where E, = & ( I  U I 2), E,  = 3( I 8 I 2, and brackets denote averages. If we introduce the 
parameter y2 we can easily derive the inequality 

where 

among all fields 0, U satisfying the boundary conditions and V . U = 0. (We have used 
the fact that ( (VU 1 2 )  + y2( IV8 I ) 2 2y( IVU 12)>s( IV8 1 2 ) ) a . )  

Now ( R +  y2)/2Hy-l has a minimum value (R-  H2)/2H2, attained when y = H. 
Thus if R < H2 the right-hand side of (B 3) is negative for y = H; since (IVU 1 2 )  + 
y2( 106 I 2 ) / ( r 1 E r T  + y2E,) is bounded below when the boundary conditions on U, 8 are 
taken into account, this implies exponential decay of U, 8. But the Euler-Lagrange 
equations for the variational problem determining H are precisely the linearized 
forms of (2.1)-(2,3) with a/a t  = 0 and H2 replacing R. Thus for any ‘periodic box’ of 
length L, H2 is equal to the critical Rayleigh number corresponding to  that value of L.  
This shows that the short-wave cut off that holds when R is very close to R, applies to 
nonlinear as well as linear disturbances. 
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